
Uma introdução ao Apache 
Kafka
Júlio César Batista

2024-02-21



An overview



A Topic is a Log

● Record of immutable events
● Messages are not destroyed after delivery

○ There is no “queue depth”, only consumer lag for monitoring
● Messages and keys are just bytes



“Eventy” messages

● user_signup {email: “user@email.com”} instead of 
send_welcome_email {email: “user@email.com”}

● Assume dumb consumers, add context to messages
○ user_signup {email: “user@email.com”, name: “Jane 

Doe”, id: 123} instead of user_signup {id: 123}

mailto:user@email.com
mailto:user@email.com
mailto:user@email.com


Partitions & Routing key

● Topics can be partitioned
○ In reality, a partition is a log

● No global order, just partition order
● Messages with the same key are sent to the same partition

○ Choose keys that won’t overload a single partition
○ If no key is given, it generates a random one (round robin)



Partitions & Scalability

● Partitions are distributed through consumers when they join/leave (rebalance)
● Partitions can be consumed by multiple consumer groups at the same time
● Only one consumer, per consumer group, can consume from a partition
● Producers can write to any partition at any time



Consumer limit per consumer group

● If there are more consumers than partitions, one of them will be idle
○ Or worse, can keep triggering rebalancing



“Inside a partition”

● Producers always write to the end of the log
● Each consumer group keeps a separate message offset for a partition

○ When a new consumer group joins, it can consume from the oldest message or start with new ones
○ This allows messages to be replayed



Message delivery semantics

● Messages are delivered at least once (default)
○ Can be configured to be exactly once

● Consumers should be idempotent
○ Especially because of replayability



Segments

● Messages are retained by 1 week (default, configurable)
● Segments are the disk files where messages are stored
● Only segments are deleted after the retention period

○ There can be messages older than the retention if there were no more writes to a partition 



Compaction

● Keep only the last record for a given key
● Enabled by default
● Doesn’t make much sense for messages without keys



Brokers

● A Cluster is composed by a set of brokers
● Brokers store the partitions

○ A topic with multiple partitions is spread through multiple brokers
● Producers and Consumers connect with brokers to write/read to/from a partition



Replication

● A partition has 3 replicas (default, configurable) stored in different brokers
● Producers & Consumers connect with the replica leader

○ Replica followers scrape the leader to keep up to date with new messages
● When the leader goes down, one of the replicas assumes as the leader



Acknowledgement and consumption readiness

● The producer receives an ACK when the leader received the message
○ Alternatively, when it was written to the disk
○ Alternatively, when it was replicated to active followers

● Consumers only receive messages that have been replicated



Key ordering for the win

● No need to handle concurrency since messages with the same key are ordered and 
delivered/processed in order

● Consumers can keep an in memory cache since messages with the same key will be delivered to 
the same consumer



No more distributed transactions

● Instead of controlling distributed updates
● Write to a log and let the storage mechanism catch up eventually



Further reading/watching

● “The magical rebalance protocol of Apache Kafka” by Gwen Shapira - 
https://www.youtube.com/watch?v=MmLezWRI3Ys

● “Is Kafka a database?” by Martin Kleppmann - 
https://www.youtube.com/watch?v=v2RJQELoM6Y

● “Kafka: A modern distributed system” by Tim Belgrund - 
https://www.youtube.com/watch?v=Ea3aoACnbEk

● “How Kafka works” by Tim Belgrund - 
https://www.youtube.com/watch?v=jY02MB-sz8I

● “The Log: What every software engineer should know about real-time data's 
unifying abstraction” by Jay Kreps - 
https://engineering.linkedin.com/distributed-systems/log-what-every-software-e
ngineer-should-know-about-real-time-datas-unifying

● Confluent resources - https://www.confluent.io/resources/?language=english

https://www.youtube.com/watch?v=MmLezWRI3Ys
https://www.youtube.com/watch?v=v2RJQELoM6Y
https://www.youtube.com/watch?v=Ea3aoACnbEk
https://www.youtube.com/watch?v=jY02MB-sz8I
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://www.confluent.io/resources/?language=english

