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An overview
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A Topicis a Log
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e Record of immutable events
e Messages are not destroyed after delivery

o There is no “queue depth”, only consumer lag for monitoring
e Messages and keys are just bytes



“Eventy” messages
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e user signup {email: “user@email.com”} instead of

send welcome emaill {email: ‘user@email.com”}
e Assume dumb consumers, add context to messages

© user signup {email: ‘user@email.com”, name: “Jane
Doe”, 1id: 123}instead of user signup {id: 123}
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Partitions & Routing key
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e Topics can be partitioned
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In reality, a partition is a log

e No global order, just partition order
e Messages with the same key are sent to the same partition
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Choose keys that won'’t overload a single partition
If no key is given, it generates a random one (round robin)
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Partitions & Scalability
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e Partitions are distributed through consumers when they join/leave (rebalance)
e Partitions can be consumed by multiple consumer groups at the same time
e Only one consumer, per consumer group, can consume from a partition
e Producers can write to any partition at any time




Consumer limit per consumer group
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If there are more consumers than partitions, one of them will be idle
Or worse, can keep triggering rebalancing




“Inside a partition”
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e Producers always write to the end of the log

e Each consumer group keeps a separate message offset for a partition
When a new consumer group joins, it can consume from the oldest message or start with new ones
This allows messages to be replayed
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Message delivery semantics
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e Messages are delivered at least once (default)
Can be configured to be exactly once
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e Consumers should be idempotent
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Especially because of replayability
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Segments
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e Messages are retained by 1 week (default, configurable)
e Segments are the disk files where messages are stored
e Only segments are deleted after the retention period
There can be messages older than the retention if there were no more writes to a partition
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Compaction
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Keep only the last record for a given key
Enabled by default
Doesn’t make much sense for messages without keys




Brokers
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e ACluster is composed by a set of brokers
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e Brokers store the partitions
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A topic with multiple partitions is spread through multiple brokers
e Producers and Consumers connect with brokers to write/read to/from a partition



Replication
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e A partition has 3 replicas (default, configurable) stored in different brokers
e Producers & Consumers connect with the replica leader
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Replica followers scrape the leader to keep up to date with new messages

e When the leader goes down, one of the replicas assumes as the leader
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Acknowledgement and consumption readiness

§g kafka

Topic A Topic A Topic B
Partition 1 Partition 2 Partition 1
Broker:1 Replica 1 Replica 3
Topic A (leader) (follower)
Producer
. Broker2 Replica 2 Replica 1 Replica 1
(follower) (follower) (leader)
Topic B N Erohers Replica 3 Replica 2 Replica 2
Producer (follower) (leader) (follower)

Topic B

p Consumer 1

Topic A

¥ Consumer 1

e The producer receives an ACK when the leader received the message
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Alternatively, when it was written to the disk

Alternatively, when it was replicated to active followers
e Consumers only receive messages that have been replicated
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Key ordering for the win
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e No need to handle concurrency since messages with the same key are ordered and

delivered/processed in order
e Consumers can keep an in memory cache since messages with the same key will be delivered to

the same consumer



No more distributed transactions
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e Instead of controlling distributed updates
e \Write to a log and let the storage mechanism catch up eventually
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Further reading/watching

e “The magical rebalance protocol of Apache Kafka” by Gwen Shapira -
https://www.youtube.com/watch?v=MmLezWRI3Ys

e “Is Kafka a database?” by Martin Kleppmann -
https://www.youtube.com/watch?v=v2R|QELoM6Y

e “Kafka: A modern distributed system” by Tim Belgrund -
https://www.youtube.com/watch?v=Ea3acACnbEk

e “How Kafka works” by Tim Belgrund -
https://www.youtube.com/watch?v=jY02MB-sz8I

e “The Log: What every software engineer should know about real-time data's
unifying abstraction” by Jay Kreps -
https://engineering.linkedin.com/distributed-systems/log-what-every-software-e
ngineer-should-know-about-real-time-datas-unifying

e Confluent resources - https://www.confluent.io/resources/?language=english
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