Uma introducao ao Apache
Kafka

Julio César Batista
I— 2024-02-21 I

An overview

Producer App 1

Producer App 2

f)

Consumer App 1

Consumer App 2

§€ kafka <

Consumer App 3

A Topicis a Log

App 1
Instance 1 R
App 4
Instance 1
- &3 kafka
Instance 1 H Topic
App 3
> [key=A || key=A || key=C || key=Z || key=A | [
Instance 2 H Message 1| | Message 2| |Message 1| |Message 1| [Message 3 \ FstEnes

e Record of immutable events
e Messages are not destroyed after delivery

o There is no “queue depth”, only consumer lag for monitoring
e Messages and keys are just bytes

“Eventy” messages

App 1
Instance 1 R
App 4
Instance 1
- &3 kafka
Instance 1 H Topic
App 3
> [key=A || key=A || key=C || key=Z || key=A | [
Instance 2 H Message 1| | Message 2| |Message 1| |Message 1| [Message 3 \ FstEnes

e user signup {email: “user@email.com”} instead of

send welcome emaill {email: ‘user@email.com”}
e Assume dumb consumers, add context to messages

© user signup {email: ‘user@email.com”, name: “Jane
Doe”, 1id: 123}instead of user signup {id: 123}

mailto:user@email.com
mailto:user@email.com
mailto:user@email.com

Partitions & Routing key

App 1

Instance 1

App 2

Instance 1

§g kafka

i

Instance 2

-

iL

Topic
key=A |[| key=A - key=Z [| key=A []
Message 1| |Message 2 Partition 1 Message 1| |Message 3|
key=C [| key=C |52 e
Message 1|[Message 2 Partition 2
key =B key =Y key =B
Message 1 || Message 1 Message 2

£

e Topics can be partitioned

@)

In reality, a partition is a log

e No global order, just partition order
e Messages with the same key are sent to the same partition

O
O

Choose keys that won'’t overload a single partition
If no key is given, it generates a random one (round robin)

App 4

Instance 1

App 3

Instance 1

Partitions & Scalability

App 4
App 1 ///—P Instance 1
/
Instance 1 | §g kCIfkd 5
App 3
” || | 1
App 2 Partition 1 7 SR
Instance 1 | . ,’, # Instance 2
Instance 2 — Instance 3
e Partitions are distributed through consumers when they join/leave (rebalance)
e Partitions can be consumed by multiple consumer groups at the same time
e Only one consumer, per consumer group, can consume from a partition
e Producers can write to any partition at any time

Consumer limit per consumer group

App 1

Instance 1

App 2

Instance 1

Instance 2

®
O

§€ kafka

Partition 1

App 4
,,—-P Instance 1
&
4
n
/]
]
’ App 3
"
"
i Instance 1
,I ’l:
' A
/
et Instance 2
(o8 |
// !
H Instance 3
Instance 4

If there are more consumers than partitions, one of them will be idle
Or worse, can keep triggering rebalancing

“Inside a partition”

&3 kafka

App 2

Instance 1

Instance 2

App 4

Instance 1

App 3

Topic
/
/ Partition 1
¢ Segment 1 Segment 2
Message Message Message Message
1 3 4 5
\\
=~ i

\

Instance 1

=

e Producers always write to the end of the log

e Each consumer group keeps a separate message offset for a partition
When a new consumer group joins, it can consume from the oldest message or start with new ones
This allows messages to be replayed

O
O

Message delivery semantics

App 2

Instance 1

[™

Instance 2

§€ kafka

App 4

Instance 1

Topic
/
/ Partition 1
¢ Segment 1 Segment 2
Message Message Message Message Message Message
1 2 3 4 5! 5
N
x5 +

App 3

\

%
|

=

e Messages are delivered at least once (default)
Can be configured to be exactly once

O

e Consumers should be idempotent

O

Especially because of replayability

Instance 1

Segments

App 2

Instance 1

[™

Instance 2

§g kafka

App 4

Instance 1

App 3

Topic
/
/ Partition 1
¢ Segment 1 Segment 2
Message Message Message Message Message Message
1 2 3 4 5! 5
B
= * o
\ |

—

e Messages are retained by 1 week (default, configurable)
e Segments are the disk files where messages are stored
e Only segments are deleted after the retention period
There can be messages older than the retention if there were no more writes to a partition

O

Instance 1

Compaction

§g kafka

Topic

Partition 1

User =123
123@email.com

User = 245
245@email.com

User = 245
0245@email.com

User = 987
987@email.com

User = 645
645@email.com

User = 245
245@email.com

User =123
0123@email.com

User =420
420@email.com

— T T
e

Topic /

/[

/[

[

4

'

!

!

| Partition1 |

User = 987
987@email.com

User = 645
645@email.com

User = 245
245@email.com

User =123
0123@email.com

User =420
420@email.com

Keep only the last record for a given key
Enabled by default
Doesn’t make much sense for messages without keys

Brokers

§g kafka

Topic B

Consumer 1

Broker 1 Topic A
Topic A Partition 1
Producer
N Broker 2 Topic B
Partition 1
Topic B N Broker 3 Topic A
Producer Partition 2

e ACluster is composed by a set of brokers

Topic A

¥ Consumer 1

Consumer 2

e Brokers store the partitions

o

A topic with multiple partitions is spread through multiple brokers
e Producers and Consumers connect with brokers to write/read to/from a partition

Replication

Topic A
Producer

§g kafka

Topic B
Producer

Topic A Topic A Topic B
Partition 1 Partition 2 Partition 1
Broker:1 Replica 1 Replica 3
(leader) (follower)
Broker2 Replica 2 Replica 1 Replica 1
(follower) (follower) (leader)
Broker 3 " .
Replica 3 Replica 2 Replica 2
(follower) (leader) (follower)

Topic B

p Consumer 1

Topic A

¥ Consumer 1

e A partition has 3 replicas (default, configurable) stored in different brokers
e Producers & Consumers connect with the replica leader

(@]

Replica followers scrape the leader to keep up to date with new messages

e When the leader goes down, one of the replicas assumes as the leader

Consumer 2

Acknowledgement and consumption readiness

§g kafka

Topic A Topic A Topic B
Partition 1 Partition 2 Partition 1
Broker:1 Replica 1 Replica 3
Topic A (leader) (follower)
Producer
. Broker2 Replica 2 Replica 1 Replica 1
(follower) (follower) (leader)
Topic B N Erohers Replica 3 Replica 2 Replica 2
Producer (follower) (leader) (follower)

Topic B

p Consumer 1

Topic A

¥ Consumer 1

e The producer receives an ACK when the leader received the message

O
O

Alternatively, when it was written to the disk

Alternatively, when it was replicated to active followers
e Consumers only receive messages that have been replicated

Consumer 2

Key ordering for the win

App 1 App 4
Instance 1 [j-« §g kGka .~ Instance 1 1
™ 7
\ i 4
\\\\ i ’//
o Topic >
W ~ 4 ‘ 1
B - | key=A [| key=A key=Z [| key=A [] 'y
b % y y aes Y y . 4 i A 3
App 2 § Message 1[|Message 2 Partition 1 Message 1||Message 3|| | T~."/ PR
/
key=C [| key=cC e T =
Instance 1 { Message 1 ||Message 2 Partition 2 s »| Instance 1
/
' key =B key =Y key =B o 1 S
Instance 2 Message 1| Message 1 Message 2 [> |Instance 2

» Instance 3

e No need to handle concurrency since messages with the same key are ordered and

delivered/processed in order
e Consumers can keep an in memory cache since messages with the same key will be delivered to

the same consumer

No more distributed transactions

App 1

Instance 1

Database

{ Cache \

Warehouse

DB Updater

q Instance 1

App 1

Instance 1

Cache Updater

Database

Instance 1

e Instead of controlling distributed updates
e \Write to a log and let the storage mechanism catch up eventually

Warehouse Updater

p Instance 1

Cache

Warehouse

(1) (D (]

Further reading/watching

e “The magical rebalance protocol of Apache Kafka” by Gwen Shapira -
https://www.youtube.com/watch?v=MmLezWRI3Ys

e “Is Kafka a database?” by Martin Kleppmann -
https://www.youtube.com/watch?v=v2R|QELoM6Y

e “Kafka: A modern distributed system” by Tim Belgrund -
https://www.youtube.com/watch?v=Ea3acACnbEk

e “How Kafka works” by Tim Belgrund -
https://www.youtube.com/watch?v=jY02MB-sz8I

e “The Log: What every software engineer should know about real-time data's
unifying abstraction” by Jay Kreps -
https://engineering.linkedin.com/distributed-systems/log-what-every-software-e
ngineer-should-know-about-real-time-datas-unifying

e Confluent resources - https://www.confluent.io/resources/?language=english

https://www.youtube.com/watch?v=MmLezWRI3Ys
https://www.youtube.com/watch?v=v2RJQELoM6Y
https://www.youtube.com/watch?v=Ea3aoACnbEk
https://www.youtube.com/watch?v=jY02MB-sz8I
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://www.confluent.io/resources/?language=english

